

RAJARSHI SHAHU MAHAVIDYALAYA LATUR

(AUTONOMOUS)

AFFILATED TO

SWAMI RAMANAND TEERTH MARATHWADA UNIVERSITY, NANDED

B. Sc. GENERAL (SEMESTER PATTERN)

B. Sc. FIRST YEAR (CBCS)

BOTANY – CURRICULUM

UNDER ACADEMIC AUTONOMOUS STATUS 2013 -2024

w. e. f. JUNE, 2022

OBJECTIVES

- 1. To know the importance and scope of the discipline.
- 2. To Inculcate interest in and love of nature with its myriad living forms.
- 3. To Impart knowledge of Science as the basic objective of Education.
- 4. To develop a scientific attitude to make students open minded, critical and curious.
- 5. To develop an ability to work on their own and to make them fit for the society.
- 6. To expose themselves to the diversity amongst life forms.
- 7. To develop skill in practical work, experiments, equipments and laboratory use along with collection and interpretation of biological materials and data.
- 8. To Make aware of natural resources and environment and the importance of conserving it.
- 9. To develop ability for the application of the acquired knowledge in the fields of life so as to make our country self reliant and self sufficient.
- 10. To Appreciate and apply ethical principles to biological science research and studies.
- 11. To enable the students to face NET, SET examinations.
- 12. To enable the students to face MPSC, UPSC and other competitive examinations successfully.

2

B. Sc. GENERAL (SEMESTER PATTERN) B. Sc. FIRST YEAR (CBCS)

BOTANY – CURRICULUM

Sem	Paper	Paper Title	Course	Marks		Total Mark	Lectures / practical	Credits
ester	No		Code	In Sem. Evaluation	End Sem. Evaluation			
	CC-I	Biodiversity of Cryptogams and Gymnosperms	U-BOT- 159	20	30	45	50	02
I	CC-II	Cell biology and Molecular biology	U-BOT- 160	20	30	45	50	02
	Lab course -I	Practical bases on CC-I & II	U-BOT- 161	20	30	15	50	02
II	CC-III	Histology Anatomy and Embryology of Angiosperms	U-BOT- 260	20	30	45	50	02
11	CC-IV	Fundamentals of Genetics	U-BOT- 261	20	30	45	50	02
	Lab course -I	Practical based on CC –III & IV	U-BOT- 262	20	30	15	50	02
						300		12

Workload:

1. Theory: Three Lectures / Paper / Week.

2. Practical: One practical (Three Lectures) / Batch / Week

B. Sc. General (Semester Pattern)

B. Sc. Second Year (CBCS)

Botany - Curriculum

Seme	Paper No.	Paper Title	Course	Marks		Total	Lectures/	Credits
ster			Code	In Sem. Evaluation	End Sem. Evaluation	- Marks	Practicals	
	CC-V	Morphology and Taxonomy of Angiosperms	U-BOT- 367	20	30	50	45	02
	CC-VI	Economic Botany and Pharmacognosy	U-BOT- 368	20	30	50	45	02
III	Lab. Course III	Based on CC –V	U-BOT- 369	20	30	50	15	02
	Lab. Course IV	Based on CC –VI	U-BOT- 370	20	30	50	15	02
	SEC-I	Nursery and Floriculture	U-ADC- 334N		50	50	45	02
	CC-VII	Environmental Biology; Gardening and Land Scaping	U-BOT- 467	20	30	50	45	02
IV	CC-VIII	Plant Breeding and Biotechnology	U-BOT- 468	20	30	50	45	02
-,	Lab. Course-V	Based on CC –VII	U-BOT- 469	20	30	50	15	02
	Lab. Course-VI	Based on CC-VIII	U-BOT- 470	20	30	50	15	02
	SEC-II	Mushroom Cultivation Techniques	U-ADC 434M		50	50	45	02
					Total	500		20

Workload:

1. Theory: Three Lectures / Paper / Week.

2. Practical: One practical (Three Lectures) / Batch / Week

B. Sc. General (Semester Pattern)

B. Sc. Third Year (CBCS)

Botany - Curriculum

Seme ster	Paper No.	Paper Title	Course Code	Marks		Lectures/ Practicals	Total Marks	Credits
5001			0000	In Sem. Evaluation	End Sem. Evaluation	Tracticals	TVIAITES	
	CC-IX	Plant Physiology and Metabolism	U-BOT-583	20	30	45	50	02
V	DSE- I	Plant Pathology-I/Plant Biotechnology (DSE)	U-BOT-584	20	30	45	50	02
	Lab Course-VII	Based on CC – IX	U-BOT-585	20	30	15	50	02
	Lab Course- VIII	Based on DSE –I	U-BOT-586	20	30	15	50	02
	SEC-III	Fruits and Fruit Processing	U-ADC- 540F		50	45	50	02
	CC-XI	Plant Biochemistry and Bioinformatics	U-BOT-683	20	30	45	50	02
VI	DSE- II	Plant Pathology-II / Cytogenetics (DSE)	U-BOT-684	20	30	45	50	02
	Lab Course -IX	Based on CC -XI	U-BOT-685	20	30	15	50	02
	Lab Course- X	Based on DSE-II	U-BOT-686	20	30	15	50	02
	SEC-IV	Basics in Horticulture	U-ADC- 640H		50	45	50	02
					Total		500	20

Workload:

1. Theory: Three Lectures / Paper / Week.

2. Practical: One Practical (Three Lectures) / Batch / Week

In Sem. Evaluation: Theory: 5 Marks for attendance, 5 Marks for UT-I and 10 Mark for UT-2 Practical: 5 Marks for attendance, 10 Marks for record book and 5 Marks for overall performance

S. N. Shinde Chairman Board of studies in Botany Rajarshi Shahu Mahavidyalaya (Autonomous), Latur

5

B. Sc. GENERAL (SEMESTER PATTERN)

B. Sc. FIRST YEAR (CBCS)

BOTANY – CURRICULUM

Sem	Paper	Paper Title	Course	Marks		Total Mark	Lectures / practical	Credits
ester	No	-	Code	In Sem. Evaluation	End Sem. Evaluation			
	I	Biodiversity of Cryptogams and Gymnosperms	U-BOT- 159	20	30	45	50	02
I	II	Cell biology and Molecular biology	U-BOT- 160	20	30	45	50	02
	Lab course -I	Practical bases on CC –I & II	U-BOT- 161	20	30	15	50	02
П	III	Histology Anatomy and Embryology of Angiosperms	U-BOT- 260	20	30	45	50	02
11	IV	Fundamentals of Genetics	U-BOT- 261	20	30	45	50	02
	Lab course -I	Practical based on CC –III & IV	U-BOT- 262	20	30	15	50	02
							300	12

Workload:

1. Theory: Three Lectures / Paper / Week.

2. Practical: One practical (Three Lectures) / Batch / Week

B. Sc. First Year Semester – I BOTANY

CC -I: Biodiversity of Cryptogams and Gymnosperms

Periods – 45 Maximum Marks – 50 Credits-02 Course code U-BOT-159

OBJECTIVES:

- 1. To awaken the students about microbial world and the nature of diseases of plants.
- 2. To become familiar with algae and bryophytes
- 3. To develop the awareness about the importance of Viruses, Bacteria, Fungi, Lichens, Algae, Bryophytes, Pteridophytes
- 4. To learn the life cycles of, Fungi, Lichens, Algae, Bryophytes, Pteridophytes

Course outcomes:

- 1. Students are able to classify microorganism on the basis of host.
- 2. Students are able to distinguish between reproductive stages of cryptogams.
- 3. Students are able to study systematic position, thallus and occurrence of algae.

UNIT – I: BACTERIA AND VIRUSES (12 L)

Introduction:

A) BACTERIA:

- **1.** General characters.
- 2. Size, Shape and Ultra structure.
- **3.** Reproduction:
 - i. Asexual
 - ii. Genetic Recombination:
 - a. Conjugation b. Transformation c. Transduction
- **4.** Economic importance.

B) VIRUSES:

- 1. General characters.
- 2. Classification
- 3. Viroids and Prions
- 4. Ultra structure of TMV.
- **5.** Economic importance.

UNIT - II: FUNGI (10 L)

1. Introduction:

- 2. General characters and Classification (Alexopolous and Mims, 1979).
- 3. Reproduction and graphic life cycle of *Erysiphe*.
- **4**. Economic importance.
- **5.** Mycorhiza (General characters)
- **6.** Lichens: General characters, Types and Economic importance.

UNIT – III: ALGAE AND BRYOPHYTES (10 L)

Introduction

A) ALGAE:

- 1. General characters.
- 2. Classification (F.E. Fritsch, 1935).
- 3. Reproduction and graphic life cycle of *Chara*.
- 4. Economic importance

B) BRYOPHYTES:

- 1. General characters.
- 2. Classification (N.S. Parihar).
- **3.** Reproduction, and graphic life cycle of (Developmental stages not expected)

Funaria.

4. Economic importance

UNIT – IV: PTERIDOPHYTES AND GYMNOSPERMS (13 periods)

Introduction

A) PTERIDOPHYTES:

- **1.** General characters.
- 2. Stellar Evolution
- 3. Classification (N.S. Parihar)
- **4.** Reproduction and graphic life cycle with alternation of generations of (Developmental stages not expected) *Nephrolepis* (**fern**).
- 5. Economic importance

B) GYMNOSPERMS:

- 1. General characters.
- **2.** Classification (Arnold, 1948).
- **3.** Morphology of vegetative and reproductive structures (Developmental stages are not expected), and life cycle of *Cycas*.
- **4.** Economic importance

Reference Books:

- 1. Trivedi, A. N. (2002) Advances in Pteridology
- 2. Bierhorst, D.W. (1971) Morphology of Vascular plants
- 3. Eames, A. J. and E. M. Giffard (1950) Comparative morphology of vascular plants.
- 4. Rashid, A. (1978) An introduction to Pteridophytes.
- 5. Sporne, K.R. (1966) Morphology of Pteridophytes.
- 6. Bower, F. O. (1963) The Ferns.
- 7. Jermy, A. G. (1973) The Phylogeny and Classification of ferns.
- 8. Vashishta, B.R. (1996) Botany for degree students Pteridophytes.
- 9. Parihar, N.S. (1959) An Introduction to Pteridophyta.
- 10. Arnold, C.A. (1972) An introduction to paleobotany.
- 11. Darroh, W.C. (1968) Principles of paleobotany.
- 12. Surange, K.R. (1968) Indian Fossil Pteridophytes.
- 13. Arnold, C.A. (1947): Introduction to Palaeobotany, Mc-Graw HillBook Co. Inc., New York and London.
- 14. Pteridophytes and Gymnosperms, springer Verlag, New York
- 15. Biswas, C & Johri, B.N. (2004), The Gymnosperms, Narosa Publishing House, New Delhi.Coulter J.M. & Chamberlain C.J.(1978): Morphology of
- 16. Gymnosperms, Central Book Depot, Allahabad.
- 17. Kakkar, R.K.and Kakkar, B.R. (1995), the Gymnosperms (Fossils& Living), Central Publishing House, Allahabad.
- 18. Sharma O.P. (2002) Gymnosperms, Pragati Prakashan, Meerut.
- 19. Vashishta P.C., A.R. Sinha, Anil Kumar. 2006. Gymnosperms. S.Chand.
- 20. Vashishta P.C. 2006. Pteridophytes. S. Chand.
- 21. Parihar N.S. 1996. Biology and Morphology of Pteridophytes. Central Book Depot, Allahabad.

B. Sc. First Year Semester – I BOTANY

CC- II: Cell and Molecular Biology

Periods – 45 Maximum Marks – 50 Credits: 02 Course code: U-BOT-160

OBJECTIVES

- 1. To acquire good knowledge about cell biology
- 2. To acquire good knowledge about chemistry of active constituents of medicinal plants.
- 3. To know the techniques of Molecular biology.
- 4. To identify the different stages of cell division.

Course outcomes

- 1) Students are able to karyotype and Ideogram and their significance.
- 2) Students are able to distinguish between mitotic & meiosis.
- 3) Students are able to justify structural aspect of DNA & RNA.

UNIT -I: CELL BIOLOGY (13 L)

- 1. Cell: Ultra structure of Prokaryotic cell and Eukaryotic cell.
- 2. Structure and functions of: Cell wall and Plasma membrane.
- **3. Structure and functions of cell organelles:** Nucleus, Golgi apparatus, Endoplasmic reticulum and Ribosome.
- 4. Structure of Flagella

UNIT –II: CHROMOSOME (10 L)

- 1. Organization of Chromosome (Nucleosome Solenoid Model).
- **2.** Morphology, structure, function of typical chromosome and chemical composition of chromosome
- **3.** Types of chromosome.
- 4. Giant chromosome: i. Polytene ii. Lambrush
- **5.** Chromosomal Aberrations (structural and numerical).

UNIT -III: CELL DIVISION (10 L)

- 1. Cell cycle: Inter phase G₁ S G₂ –M phase and G₀ phase
- 2. Phages and significance of Mitosis.
- 3. Phages and significance of Meiosis.
- 4. Types of Meiosis.
- 5. Difference between Mitosis and Meiosis

UNIT -IV: MOLECULAR BIOLOGY (12 L)

- 1. Structure of DNA (Watson and Crick model).
- 2. Replication of DNA: Enzymes and their function used in it and Steps
- 3. Structure, function and types of RNA. (r –RNA, t-RNA, m-RNA,)
- 4. Properties of Genetic code
- 5. Protein synthesis: Enzymes and their function used in it and Steps

Reference Books:

- 1. Albert's B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J. D. 1989
- 2. Molecular biology of the Cell (2ndedition). Garland Pub. Inc., New York.
- 3. Karp, G. 1999. Cells and Molecular Biology: Concepts & Experiments. John Wiley and Sons, Inc., USA.
- 4. Lodish S, Baltimore B, Berk, C and Lawrence K, 1995, Molecular Cell Biology ,3rd editions, Scientific American Books, N.Y
- 5. De Robertis and De Robertis, 1988, Cell and Molecular Biology, 8 edition, Info-Med, Hongkong.
- 6. Buchanan, Grissem and Jones, 2000, Biochemistry and Molecular Biology of Plants, American Soc. Plant Biologists, Waldorf
- Lewin, B. 2000. GENE VII. Oxford University Press, New York, USA Cooper G M and Hausman R E,2007, The Cell: Molecular Approach 4thEdn, Sinauer Associates, USA. Johnson Lewys – 2004: Cell Biology; Sarup and sons, New Delhi
- 8. E.J. Dupraw 1970: Cell and Molecular Biology; Academic Press, London
- 9. De Robertis and De Robertis 1997: Cell and Molecular Biology (VIII); B.I. Waverly Pvt. Ltd., New Delhi
- C. P. Swanson, T. Merz, and W.J. Young 1982: Cytogenetics; Prentice Hall of India Pvt. Ltd., New Delhi India
- 11. C. B. Powar 1992: Cell Biology; Himalaya Publishing House.

B. Sc. First Year Semester – I BOTANY

Practical Paper-I: Practical based on CC- I & II

Periods – 45 Maximum Marks – 50 Credits-02 Course code U-BOT-161

Course outcomes

- 1) Students are able to identify the different microbes.
- 2) Students are able to identify the different types of algae, bryophyte etc.
- 3) Students are able to understand that the number of chromosome is characteristic of each species and can vary enormously between species.
- 4) Students are able to recognize that genetics is based on concept of genes as unit of inheritance.

Course outcomes

- 1) Students are able to identify, classify and describe cryptogams on the basis of external and reproductive features.
- 2) Students are able to karyotype and Ideogram and their significance.
- 3) Students are able to distinguish between mitotic & meiosis.
- **Practical 1:** Study of forms of Bacteria.
- **Practical 2:** Study of external features of *Chara*.
- **Practical 3:** Study of external features of *Erysiphe with* classification.
- Practical 4: Study of types of Lichens (Crustose, Foliose and Fructicose).
- **Practical** 5: Study of external and internal features of *Funaria*.
- **Practical 6:** Study of external and internal features of *Nephrolepis*.
- **Practical** 7: Study of external, internal and reproductive features of *Cycas*.
- **Practical 8:** Study of cell organelles with the help of photocopies / slides
- **Practical 9:** Study of mitosis (Onion/Garlic Root tips).
- **Practical 10:** Study of Mitotic index (Onion/Garlic Root tips).
- **Practical 11-12:** Study of Meiosis from onion floral buds or any other available material.
- **Practical 13:** Study of karyotype and ideogram from photocopies of Onion / Aloe plant material.
- **Practical 14: Botanical excursions (one short excursion is compulsory)**

B. Sc. First Year Semester – II BOTANY

CC-III: Histology, Anatomy and Embryology of Angiosperms

Periods – 45 Maximum Marks – 50 Credits: 02 Course code: U-BOT-260

OBJECTIVES

1. To awaken the students about Tissue system of plants.

- 2. To understand the process and concepts in plant Embryology.
- 3. To understand the relationships between pathogens and plants.
- 4. To become familiar with histology and anatomy of plants.
- 5. To learn the internal structures of plant organs.

Course outcomes:

- 1) Students will be able to differentiate various tissues.
- 2) Students will be able to perform sectioning of various ovules.
- 3) Developed approach for embryology study.

UNIT - I: HISTOLOGY (12 L)

Introduction: Plant Tissues

A. Meristematic tissues and their classification based on position

B. Permanent Tissues

I Simple Tissues:

- 1. Parenchyma
- 2. Collenchyma
- 3. Sclerenchyma

II Complex Tissues

- 1. Xylem
- 2. Phloem

III Secretary Tissues

1. Laticiferous Tissues

Ex. Latex cells

- 2. Glandular Tissues
- a. External glands

Ex. Digestive glands

b. Internal glands

Ex. Oil glands

UNIT - II: ANATOMY (12 L)

- 1. Introduction:
- 2. Anatomy of dicot Stem (Sunflower).
- **3.** Anatomy of monocot Stem (Maize).
- **4.** Secondary growth in dicot stem.
- **5.** Leaf anatomy of dicotyledons (Sunflower)
- **6**. Leaf anatomy of monocotyledons (Maize).
- **7.** Anomalous secondary growth in monocot stem (*Dracaena*).

UNIT -III: EMBRYOLOGY -I (11 L)

- 1. Introduction:
- **2** Structure of a Microsporangium (T.S. of anther).
- **3.** Structure of a Microspore.
- **4.** Development of male gametophyte (Microgametogenesis).
- **5.** Structure of a Megasporangium.
- **6.** Anatropous ovule
- 7. Types of ovule.
- 8. Development of female gametophyte (Monosporic).

UNIT – IV: EMBRYOLOGY –II (10 L)

- 1. Fertilization: Double Fertilization and its significance.
- 2. Post fertilization changes.
- **3.** Endosperm and its types.
- **4.** Development of dicot embryo (Crucifer type).
- **5.** Structure of Dicot seed.
- 6. Structure of Monocot seed.

References:

- 1. **Briggs David 2009.** Plant microevolution and Conservation in Human-influenced *Ecosystems*. Cambridge University Press.
- 2. **Cronquist, A. 1981.** *An Integrated System of Classification of Flowering Plants* Columbia University Press, New York.
- 3. **Cronquist, A. 1988**. *The Evolution and Classification of Flowering Plants* (2nded.) Allen Press, U.S.A.
- 4. **Davis, P. H. and V. H. Heywood 1991**. *Principles of Angiosperm Taxonomy*. Today and Tomorrow Publications, New Delhi.
- 5. **Hutchinson, J. 1959.** *Families of Flowering plants.*
- 6. Judd W. S., Campbell, C. S., Kellogg, E. A., Stevens P. F. and M. J. Donoghue 2008. *Plant Systematics: A phylogenetic Approach*. Sunderland, Massachusetts,

USA.

- 7. **Lawrence George H. M. 195.1** *Taxonomy of Vascular Plants*. Oxford and IBH Publ. Co. Pvt. Ltd. New Delhi.
- 8. **Leadlay E. and S. Jury (ed.) 2006.** *Taxonomy and Plant conservation.* Cambridge University Press.
- 9. Manilal, K. S. and M. S. Muktesh Kumar [ed.] 1998. A Handbook of Taxonomic
- 10. Training. DST, New Delhi.
- 11. Naik, V. N. 1984. Taxonomy of Angiosperms. Tata McGraw-Hill Publication Com. Ltd.
- 12. New Delhi
- 13. Quicke, Donald, L. J. 1993. Principles and Techniques of Contemporary
- 14. Taxonomy. Blakie Academic & Professional, London
- 15. Takhtajan, A. 1962. Flowering plants- Origin and Dispersal.
- 16. **Taylor, D. V. and L. J. Hickey 1997.** Flowering Plants: Origin, Evolution and Phylogeny. CBS Publishers & Distributers, New Delhi.

B. Sc. First Year Semester – II BOTANY

CC-IV: Fundamentals of Genetics

Periods – 45 Maximum Marks – 50 Credits: 02 Course code: U-BOT-261

OBJECTIVES:

- 1. To awaken the students about genetic terms.
- 2. To understand the principles of genetics and laws of inheritance.
- 3. To understand the relationships between epistatic and non epistatic genes.
- 4. To develop the awareness about genetic disorders

Course outcomes:

- 1) Students are able to develop understanding about inheritance Biology.
- 2) Students are able to Solved problems independently on Genetic disorder.
- 3) Students are able to understood Gene related diseases & its control.

UNIT –I: MENDELISM

(10 L)

- 1. Introduction of Genetics
- 2. Mendel's experiments (biography of Mendel).
- **3.** Genetic terminologies
- **4.** Monohybrid crosses with examples.
- **5.** Dihybrid cross with examples
- **6.** Back cross and Test cross with examples.
- 7. Mendel's Laws of Inheritance.

UNIT –II: GENE INTERACTIONS (12 L)

1. Introduction

A. Allelic interactions:

- 1. Incomplete dominance with examples of 4 '0'clock plant.
- 2. Co-dominance with examples of coat color in cattle

B. Non-Allelic interactions

- I. **Epistatic:** Explanation and examples of
 - i) Dominant epistasis 12:3:1 (Fruit colour in summer squash)
 - ii) Recessive epistasis 9:3:4 (Supplementary genes) (Grain colour in maize/coat colour in mice)
 - iii) Duplicate dominant epistasis 15:1 (Seed capsule of Shepherds purse)
 - iv) Duplicate recessive epistasis 9:7 (Complementary genes) (Sweet pea flower color)
- II. **Non-epistatic:** Explanation and examples of
 - a) Collaborator gene 9:3:3:1 (Comb shape in fowl)

UNIT -III: SEX DETERMINATION: (11 L)

- 1. Introduction
- 2. Sex determination: Discovery of sex chromosomes,
- **3.** Chromosomal theory of sex determination.
- **4.** Sex determination in Animals/ Drosophila (XX, XY method)
- 5. Sex determination in insects (XO-XX method),
- **6.** Sex determination in Birds (ZW-ZZ method),
- 7. Sex determination in Plants (Asparagus).
- **8.** Linkage: Definitions, significance, Coupling and repulsion hypothesis.

UNIT –IV: SEX LINKED INHERITANCE: (12 L)

- 1. Introduction: Definition
- 2. Types of Sex linked inheritance: i. X-linked with example
 - ii. Y-linked with example
 - iii. XY-linked with example
- 3. Sex linked inheritance in Drosophila (White eye colour)
- 4. Sex linked inheritance in Man: Hemophilia
- 5. Sex linked inheritance in Man: Colour blindness
- 6. Sex linked inheritance in Man: Hypertrochosis
- 7. Inheritance of bobbed bristles in Drosophila
- **8. Gene related diseases**: i. Phenylketonuria (PKU)
 - ii. Alkaptonuria (AKU)
 - iii. Albinism.

9. Syndromes in Man:

- i) Autosomal: Down's syndrome
- ii) Chromosomal: Klinfelter's Syndrome.

References:

- 1. Alberts, B. Bray, D. Lewis, J. Raff, M. Roberts, K. and Watson, J. D. I989. Molecular Biology (Ed.) Garland Publishing Inc. New York.
- 2. Atherl, A. G., Girton, J. R. and McDonald, J. F. 1999. The Science of Genetics. Saunders College USA.
- 3. Burnham, C. R. 1962. Discussions in Cytogenetics, Burgess Publishing Co., Minnesota.
- 4. Busch. H. and Rothblum, L. 1982 Volume X. The cell nucleus: DNA part A, Academic Press.

- 5. Hartl, D. L. and Jones E. W. 1998. Genetics: Principles and Analysis (4ih Ed.)
- 6. Jones and Barew Publishers, Massachusetts, USA.
- 7. Khush, G. S. 1973. Cytogenetics of Aneuploids, Academic Press, New York, London.
- 8. Karp, G. 1999. Cell and Molecular Biology; Concepts and Experiments, John Wiley and Sons Inc. USA.

B. Sc. First Year Semester – II BOTANY

Practical Paper-II: Practical based on CC – III & IV

Periods – 45 Maximum Marks – 50 Credits: 02 Course code: U-BOT-262

OBJECTIVES:

- 1. Students are able to stand in clinic as genetics services.
- 2. Students identify the different types of genetic disorder.
- 3. Students Prepare independently permanent slides.

Course outcomes:

- 1. Students are able to differentiate types of tissues.
- 2. Students are able to perform sectioning of various parts of plant
- **Practical 1:** Study of meristematic and Simple Tissue with the help of Permanent slides /models/ Charts/photocopies.
- **Practical 2:** Study of Complex and secretary tissue with the help of Permanent slides/models / Charts/photocopies.
- **Practical 3:** Study of T.S. of Anther and types of ovule with the help of Permanent slides/models/ charts/photocopies.
- **Practical 4:** Preparation of double stained permanent slides of Sunflower Stem.
- **Practical 5:** Preparation of double stained permanent slides of Maize Stem.
- **Practical 6:** Preparation of double stained permanent slides of Dracaena Stem.
- **Practical 7-12:** Problems based on monohybrid/Dihybrid ratio; 9:7/12:3:1/15:1 and collaborator gene.
- **Practical 13-14:** Problems based on sex-linked inheritance.
- **Practical 15-16: Botanical excursions (one long excursion is compulsory)**

SKELETON OF QUESTION PAPER B. Sc. First Year

Semester – I & II

Theory Paper-I, II, III and IV

Time: 1.30 hours	Maximum Marks: 30					
Note: (i) Attempt all questions. (ii) Draw neat and well labeled diagrams wherever necessary.						
Q1. Attempt all of the following (Each 3 marks)	12					
a)						
b)						
c)						
d)						
Q2. Attempt any ONE of the following	08					
a)						
b)						
Q3. Attempt any ONE of the following	10					
a)						
b)						

RAJARSHI SHAHU MAHAVIDYALAYA, LATUR

(Autonomous)

B.Sc. I PRACTICAL EXAMINATION IN BOTANY

SEE WINTER/SUMMER

Time: Three Hours

Note: - (i) Attempt all questions.

(ii) Draw neat and well labeled diagrams wherever necessary.

Q. 1. Long answer type question.

10

Q. 2. Long answer type question.

10

Q. 3. Spotting: (02 spots)

05

Q. 4. Viva- Voce.

S.N. Shinde Chairman Board of Studies in Botany Rajarshi Shahu Mahavidyalaya (Autonomous), Latur